Article ID Journal Published Year Pages File Type
13421012 International Journal of Solids and Structures 2020 22 Pages PDF
Abstract
Stressed dislocation pattern formation in crystal plasticity at finite deformation is demonstrated for the first time. Size effects are also demonstrated within the same mathematical model. The model involves two extra material parameters beyond the requirements of standard classical crystal plasticity theory. The dislocation microstructures shown are decoupled from deformation microstructures, and emerge without any consideration of latent hardening or constitutive assumptions related to cross-slip. Crystal orientation effects on the pattern formation and mechanical response are also demonstrated. The manifest irrelevance of the necessity of a multiplicative decomposition of the deformation gradient, a plastic distortion tensor, and the choice of a reference configuration in our model to describe the micromechanics of plasticity as it arises from the existence and motion of dislocations is demonstrated.
Related Topics
Physical Sciences and Engineering Engineering Civil and Structural Engineering
Authors
, ,