Article ID Journal Published Year Pages File Type
13450056 Chinese Journal of Aeronautics 2019 12 Pages PDF
Abstract
The authors recently developed a kind of non-probabilistic analysis method, named as 'non-random vibration analysis', to deal with the important random vibration problems, in which the excitation and response are both given in the form of interval process rather than stochastic process. Since it has some attractive advantages such as easy to understand, convenient to use and small dependence on samples, the non-random vibration analysis method is expected to be an effective supplement of the traditional random vibration theory. In this paper, we further extend the non-random vibration analysis into the general viscous damping system, and formulate a method to calculate the dynamic response bounds of a viscous damping vibration system under uncertain excitations. Firstly, the unit impulse response matrix of the system is obtained by using a complex mode superposition method. Secondly, an analytic formulation of the system dynamic response middle point and radius under uncertain excitations is derived based on the Duhamel's integral, and thus the upper and lower response bounds of the system can be obtained. Finally, two numerical examples are investigated to demonstrate the effectiveness of the proposed method.
Keywords
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , ,