Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1348490 | Tetrahedron: Asymmetry | 2006 | 6 Pages |
The synthesis of (S)-3,5-bistrifluoromethylphenyl ethanol, a pharmaceutically important alcohol intermediate for the synthesis of NK-1 receptor antagonists, was demonstrated from a ketone via asymmetric enzymatic reduction. The isolated enzyme alcohol dehydrogenase from Rhodococcus erythropolis reduced the poorly water soluble substrate with excellent ee (>99.9%) and good conversion (>98%). The optimized process was demonstrated up to pilot scale using high substrate concentration (390 mM) using a straightforward isolation process achieving excellent isolation yields (>90%) and effective space time yield (100–110 g/L d). Process improvements, demonstrated at preparative scale, increased the substrate concentration to 580 mM achieving a space time yield of 260 g/L d.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide