Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1356239 | Bioorganic Chemistry | 2006 | 12 Pages |
Thiamin diphosphate-dependent decarboxylases catalyze the non-oxidative decarboxylation of 2-keto carboxylic acids. Although they display relatively low sequence similarity, and broadly different range of substrates, these enzymes show a common homotetrameric structure. Here we describe a kinetic characterization of the substrate spectrum of a recently identified member of this class, the branched chain 2-keto acid decarboxylase (KdcA) from Lactococcus lactis. In order to understand the structural basis for KdcA substrate recognition we developed a homology model of its structure. Ser286, Phe381, Val461 and Met358 were identified as residues that appeared to shape the substrate binding pocket. Subsequently, site-directed mutagenesis was carried out on these residues with a view to converting KdcA into a pyruvate decarboxylase. The results show that the mutations all lowered the Km value for pyruvate and both the S286Y and F381W variants also had greatly increased values of kcat with pyruvate as a substrate.
Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide