Article ID Journal Published Year Pages File Type
1380360 Carbohydrate Polymers 2006 9 Pages PDF
Abstract

The emulsion-stabilizing properties of a chitosan preparation were compared as a function of the whey protein isolate/chitosan mixture ratio (WPI/CNI) and the ionic strength (μ), at pH 5.5 and 6.0. At both pH conditions, general decreases in emulsion stability towards charge neutralization flocculation and syneresis were observed at WPI/CNI > 5. This was particularly evident at pH 6.0, due to a lower surface net charge (lower electrostatic stabilization). In counterpart, when μ was increased, the higher load of chitosan at pH 6.0 produced higher stabilities (higher steric stabilization), in spite of comparable decreases of surface net charge at both pH conditions. The transition from soluble to insoluble protein–chitosan complex formation in mixtures at pH 6.0 and WPI/CNI > 5.0 was due to an emulsion destabilization towards syneresis, whereas soluble complex formation at pH 5.5 also produced syneresis. It showed that soluble protein–chitosan adsorbing complex formation prior homogenization is not essentially linked to emulsion stabilization.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,