Article ID Journal Published Year Pages File Type
1384404 Carbohydrate Research 2011 7 Pages PDF
Abstract

Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-α-d-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 °C and 70 °C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. α-Anomer showed faster hydrolysis than the β-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,