Article ID Journal Published Year Pages File Type
1385049 Carbohydrate Polymers 2008 12 Pages PDF
Abstract

Cotton cellulose was successfully functionalized via a free radical graft polymerization process. Potassium persulfate served as an effective water soluble radical initiator to generate cellulosic radicals. The polymeric radicals could react with allyl monomers such as allyl-dimethylhydantion (ADMH) to form surface grafted cellulose. The reaction sites generated by potassium persulfate were probably at carbon 3 and 4 in glucose ring via oxidative hydrogen abstraction. The cellulosic radicals can initiate grafting polymerization of ADMH with a maximum polymerization degree of about 12 based on LC–MS results. The radical graft polymerization mechanisms were proposed based on LC–ESI/MS analysis. The ideal covalent bonding between cellulose and poly (allyl-dimethylhydantion) (PADMH) ensured permanent graft of the monomers on cotton and durability of the expected functions on the treated cotton.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,