Article ID Journal Published Year Pages File Type
1385221 Carbohydrate Research 2008 8 Pages PDF
Abstract

It has been difficult to identify the proton donor and nucleophilic assistant/base of endoplasmic reticulum α-(1→2)-mannosidase I, a member of glycoside hydrolase Family 47, which cleaves the glycosidic bond between two α-(1→2)-linked mannosyl residues by the inverting mechanism, trimming Man9GlcNAc2 to Man8GlcNAc2 isomer B. Part of the difficulty is caused by the enzyme’s use of a water molecule to transmit the proton that attacks the glycosidic oxygen atom. We earlier used automated docking to conclusively determine that Glu435 in the yeast enzyme (Glu599 in the corresponding human enzyme) is the nucleophilic assistant. The commonly accepted proton donor has been Glu330 in the human enzyme (Glu132 in the yeast enzyme). However, for theoretical reasons this conclusion is untenable. Theory, automated docking of α-d-3S1-mannopyranosyl-(1→2)-α-d-4C1-mannopyranose and water molecules associated with candidate proton donors, and estimation of dissociation constants of the latter have shown that the true proton donor is Asp463 in the human enzyme (Asp275 in the yeast enzyme).

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,