Article ID Journal Published Year Pages File Type
1386166 Carbohydrate Polymers 2009 6 Pages PDF
Abstract

In this study, the electrospinning of chitosan has been investigated. The problem of chitosan high viscosity, which limits its spinability, is resolved through the application of an alkali treatment which hydrolyzes chitosan chains and so decreases its their molecular weight. Solutions of the treated chitosan in aqueous 70–90% acetic acid produce nanofibers with appropriate quality and processing stability. Decreasing the acetic acid concentration in the solvent increases the mean diameter of the nanofibers. Optimum nanofibers are achieved with chitosan which is hydrolyzed for 48 h. Such nanofibers result in a moisture regain which is 74% greater than that of treated and untreated chitosan powder. The diameter of this nanofiber, 140 nm, is strongly affected by the electrospinning conditions as well as by the concentration of the solvent. FTIR investigations prove that neither the alkali treatment nor the electrospinning process change the chemical nature of the polymer.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,