Article ID Journal Published Year Pages File Type
1387098 Carbohydrate Polymers 2011 7 Pages PDF
Abstract

Alginate is a naturally occurring polymer that has been widely accepted as biodegradable and biocompatible material. Incorporation of nanoceramic will improve the capability of polymeric scaffold for tissue regeneration. Hence, in this study we fabricated a nanocomposite scaffold using alginate with nanoTiO2 needles by lyophilization technique. The prepared nanocomposite scaffold was characterized using SEM, XRD, FTIR and TGA. In addition, swelling, degradation and biomineralization capability of the scaffold were also evaluated. The developed nanocomposite scaffolds showed well controlled swelling and degradation when compared to the control alginate scaffold. Cytocompatibility was assessed using MTT assay and cell attachment studies. Results indicated no sign of toxicity and cells were found to be attached to the pore walls offered by the scaffolds. These results suggested that the developed nanocomposite scaffold possess the prerequisites for tissue engineering application. Hence, alginate/nanoTiO2 composite scaffold can be used as a better option for tissue regeneration.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,