Article ID Journal Published Year Pages File Type
1387917 Carbohydrate Research 2011 7 Pages PDF
Abstract

Potentiometric, conductometric and 31P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP6 ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P–O–Fe–O–P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)–InsP6 aggregates. 31P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T1 relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP6 molecule results in an unstable heterogeneous system.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slideResearch highlights► Potentiometric measurements enable an insight into the Fe3+–phytate stoichiometry. ► Shift of titration curves show release of three moles of H+ per two moles of Fe3+. ► Conductometry applied for the first time supports potentiometric measurements. ►31P NMR T1 relaxation time indicates pH dependent Fe–phytate interactions.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,