Article ID Journal Published Year Pages File Type
1388606 Carbohydrate Research 2010 5 Pages PDF
Abstract

The objective of this study was to identify polysaccharides with antioxidant properties for use as potential antioxidative compounds for extended-release matrix tablets. The antioxidant properties of five different polysaccharides, high molecular weight alginate (H-ALG), low molecular weight alginate (L-ALG), high molecular weight chitosan (H-chitosan), low molecular weight chitosan (L-chitosan), and pectic acid (PA) were examined using N-centered radicals from 1,1′-diphenyl-2-picrylhydrazyl (DPPH) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and reducing power, based on their ability to reduce Cu2+. L-chitosan and PA had acceptable scavenging abilities and were good radical scavengers, with good reducing power, but the H-chitosan and alginate derivatives were much less effective. The results suggest that L-chitosan and PA could be useful in combating oxidative stress. A PA and L-chitosan interpolymer complex (IPC) tablet was prepared and evaluated as an extended-release tablet matrix using theophylline (TPH) as a model drug. The release of TPH from the matrix tablet (TPH/PA/L-chitosan = 200 mg:150 mg:50 mg) was slower than that from PA only (TPH/PA/chitosans = 200 mg:200 mg:0 mg) or L-chitosan only (TPH/PA/L-chitosan = 200 mg:0 mg:200 mg) tablet. Turbidity measurements also indicated the optimum complexation ratio for IPC between PA/L-chitosan to be 1/3, indicating an acceptable relationship between the turbidity of the complex and the release ratio of TPH. These results suggest that an L-chitosan/PA complex would be potentially useful in an extended-release IPC tablet with high antioxidant activity.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,