Article ID Journal Published Year Pages File Type
1389106 Carbohydrate Research 2007 9 Pages PDF
Abstract

Starting from l-lyxose, indium-mediated chain elongation with allyl bromide followed by acetylation and oxidative cleavage of the double bond and deprotection afforded 2-deoxy-l-galacto-heptose as a 2-deoxy analogue of the bacterial carbohydrate l-glycero-d-manno-heptose in good overall yield. For the synthesis of the ADP-activated derivative, the 2-deoxy-heptose was O-acetylated and transformed into the anomeric bromide derivative, which was then converted into the acetylated heptopyranosyl phosphate by reaction with tetrabutylammonium phosphate. Deprotection and separation of the anomeric phosphates furnished 2-deoxy-β-l-galacto-heptopyranosyl phosphate. Coupling of the acetylated heptosyl phosphate with AMP morpholidate afforded the acetylated ADP derivative in good yield. Removal of the acetyl groups gave the target compound ADP 2-deoxy-l-galacto-heptopyranose, which may serve as substrate analogue of bacterial ADP heptosyl transferases for biochemical and crystallographic studies.

Graphical abstractThe chemical synthesis of ADP 2-deoxy-l-galacto-heptose is described.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,