Article ID Journal Published Year Pages File Type
1390103 Carbohydrate Research 2015 7 Pages PDF
Abstract

•Important factors affecting cooked starch digestion determined by Plackett–Burman experiment.•The optimal proportion of HPA and ctMGAM in a starch digestion process determined by response surface methodology.•The inhibitory effects of different inhibitors evaluated by in vitro enzymal starch digestive system.•The inhibitory effects of inhibitors confirmed by in vivo assay.

In human, digestion of cooked starch mainly involves breaking down of α-amylase to α-limit dextrins and small linear malto-oligosaccharides, which are in turn hydrolyzed to glucose by the gut mucosal maltase-glucoamylase (MGAM). Human pancreatic α-amylase (HPA), amino- and carboxyl-terminal portions of MGAM (ntMGAM and ctMGAM) catalyze the hydrolysis of α-d-(1,4) glycosidic linkages in starch, playing a crucial role in the production of glucose in the human lumen. Accordingly, these enzymes are effective drug targets for the treatments of type 2 diabetes and obesity. In this study, a Plackett–Burman based statistical screening procedure was adopted to determine the most critical factors affecting cooked starch digestion by the combination of HPA, ctMGAM and ntMGAM. Six factors were tested and experimental results showed that pH and temperature were the major influencing factors, with optimal pH and temperature at 6.0 and 50 °C, respectively. Surprisingly, ntMGAM had no significant contribution to the glucose production from starch digestion compared to the HPA and ctMGAM. The optimal proportion of HPA and ctMGAM in a starch digestion system was further determined by response surface methodology. Results showed a maximum starch digestion (88.05%) within 0.5 h when used HPA:ctMGAM=1:9 (U). The inhibitory effects of various inhibitors on the cooked starch digestion by HPA1/ctMGAM9 were evaluated by determining their half maximal inhibitory concentration (IC50) values. Acarviostatin II03 showed the highest inhibitory activity, with 67 times higher potency than acarbose. Moreover, acarviostatin II03 could significantly depress postprandial blood glucose levels in mice, better than that by acarbose. These findings suggest that our in vitro enzymatic system can simulate in vivo starch digestion process, and thus can be used to screen and evaluate α-glucosidase inhibitors.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , ,