Article ID Journal Published Year Pages File Type
1390507 Carbohydrate Research 2011 5 Pages PDF
Abstract

It is well known that the saccharides forming the intricate sugar coat that surrounds the cells play important biological roles in intercellular communication and cell differentiation. Therefore, it is worthwhile developing saccharide-based hydrogels for cell culture study. In this study, three novel saccharide-based compounds were designed and synthesized. It was found that one of them could form hydrogels efficiently, while the other two precipitated from water. The stability of the resulting hydrogel was tested, and the supramolecular nanofiber with fiber diameters in the range of 80–300 nm was characterized as the structural element by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fluorescence microscopy revealed that extensive hydrogen bonds between sugar rings assisted the formation of efficient π–π stacking between aromatic naphthalene groups, thus resulting in the formation of a stable hydrogel in aqueous solution. When the gel was applied for mouse embryonic fibroblast (NIH 3T3), human hepatocellular carcinoma (HepG2), AD293 and HeLa cells culture in two dimensional environments, all of them showed a very good adhesion and good proliferation rate on the top of the hydrogel. These results indicates that the biocompatible hydrogel reported here has a potential to be developed into useful materials for in vitro cell culture, drug delivery, and tissue engineering.

Graphical abstractA fluorescent saccharide-based supramolecular hydrogel was found to be bioactive for HepG2, AD293, NIH 3T3, and HeLa cell culture in two dimensional environments.Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , ,