Article ID Journal Published Year Pages File Type
1390654 Carbohydrate Research 2010 6 Pages PDF
Abstract

We have previously reported the efficient conversion of lactose into 3′-sialyllactose by high cell density cultures of a genetically engineered Escherichia coli strain expressing the Neisseria meningitidis gene for α-(2→3)-sialyltransferase [Fierfort, N.; Samain, E. J. Biotechnol. 2008, 134, 261–265.]. First attempts to use a similar strategy to produce 6′-sialyllactose with a strain expressing α-(2→6)-sialyltransferase from the Photobacterium sp. JT-ISH-224 led to the production of a trisaccharide that was identified as KDO-lactose (2-keto-3-deoxy-manno-octonyllactose). This result showed that α-(2→6)-sialyltransferase was able to use CMP-KDO as sugar donor and preferentially used CMP-KDO over CMP-Neu5Ac. By reducing the expression level of the sialyltransferase gene and increasing that of the neuABC genes, we have been able to favour the formation of 6′-sialyllactose and to prevent the formation of KDO-lactose. However, in this case, a third lactose derivative, which was identified as 6,6′-disialyllactose, was also produced. Formation of 6,6′-disialyllactose was mainly observed under conditions of lactose shortage. On the other hand, when the culture was continuously fed with an excess of lactose, 6′-sialyllactose was almost the only product detected and its final concentration was higher than 30 g/L of culture medium.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,