Article ID Journal Published Year Pages File Type
1391609 Chemistry & Biology 2009 11 Pages PDF
Abstract

SummaryHedamycin is an antitumor polyketide antibiotic with unusual biosynthetic features. Earlier sequence analysis of the hedamycin biosynthetic gene cluster implied a role for type I and type II polyketide synthases (PKSs). We demonstrate that the hedamycin minimal PKS can synthesize a dodecaketide backbone. The ketosynthase (KS) subunit of this PKS has specificity for both type I and type II acyl carrier proteins (ACPs) with which it collaborates during chain initiation and chain elongation, respectively. The KS receives a C6 primer unit from the terminal ACP domain of HedU (a type I PKS protein) directly and subsequently interacts with the ACP domain of HedE (a type II PKS protein) during the process of chain elongation. HedE is a bifunctional protein with both ACP and aromatase activity. Its aromatase domain can modulate the chain length specificity of the minimal PKS. Chain length can also be influenced by HedA, the C-9 ketoreductase. While co-expression of the hedamycin minimal PKS and a chain-initiation module from the R1128 PKS yields an isobutyryl-primed decaketide, the orthologous PKS subunits from the hedamycin gene cluster itself are unable to prime the minimal PKS with a nonacetyl starter unit. Our findings provide new insights into the mechanism of chain initiation and elongation by type II PKSs.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,