| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 1392132 | Chemistry & Biology | 2008 | 11 Pages |
SummaryMycobacterium tuberculosis FabH initiates type II fatty acid synthase-catalyzed formation of the long chain (C16–C22) acyl-coenzyme A (CoA) precursors of mycolic acids, which are major constituents of the bacterial cell envelope. Crystal structures of M. tuberculosis FabH (mtFabH) show the substrate binding site to be a buried, extended L-shaped channel with only a single solvent access portal. Entrance of an acyl-CoA substrate through the solvent portal would require energetically unfavorable reptational threading of the substrate to its reactive position. Using a class of FabH inhibitors, we have tested an alternative hypothesis that FabH exists in an “open” form during substrate binding and product release, and a “closed” form in which catalysis and intermediate steps occur. This hypothesis is supported by mass spectrometric analysis of the product profile and crystal structures of complexes of mtFabH with these inhibitors.
