Article ID Journal Published Year Pages File Type
1392515 Chemistry & Biology 2006 9 Pages PDF
Abstract

SummaryThe natural product lovastatin and its semisynthetic, more effective derivative, simvastatin, are important drugs for the treatment of hypercholesterolemia. Here, we report the biochemical characterization of a dedicated acyltransferase, LovD, encoded in the lovastatin biosynthetic pathway. We demonstrate that LovD has broad substrate specificity towards the acyl carrier, the acyl substrate, and the decalin acyl acceptor. LovD can efficiently catalyze the acyl transfer from coenzyme A thioesters or N-acetylcysteamine (SNAC) thioesters to monacolin J. When α-dimethylbutyryl-SNAC was used as the acyl donor, LovD was able to convert monacolin J and 6-hydroxyl-6-desmethylmonacolin J into simvastatin and huvastatin, respectively. Using the Escherichia coli LovD overexpression strain as a whole-cell biocatalyst, preparative amounts of simvastatin were synthesized in a single fermentation step. Our results demonstrate LovD is an attractive enzyme for engineered biosynthesis of pharmaceutically important cholesterol-lowering drugs.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,