Article ID Journal Published Year Pages File Type
1394142 Chemistry & Biology 2007 7 Pages PDF
Abstract

SummaryThe mammalian target of rapamycin (mTOR) signaling network is central to the regulation of cell growth in response to both growth factors and nutrients. We developed a high-throughput, cell-based assay to identify small-molecule modulators of the mTOR signaling network. One such compound, which we name quinostatin, potently inhibits this network by directly targeting the lipid-kinase activity of the catalytic subunits of class Ia PI3Ks. This study illustrates the power of unbiased, phenotypic screening as a means for illuminating cell circuitry, and resulted in the identification of a chemotype for selective inhibition of the class Ia PI3Ks.

Keywords
Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,