Article ID Journal Published Year Pages File Type
1396350 European Polymer Journal 2009 6 Pages PDF
Abstract

A novel dual phase concomitant, methylcellulose sol@poly(vinyl alcohol) (MC/PVA) hydrogel, was prepared via physical mixing and subsequent freezing/thawing. MC/PVA hydrogel was stable within a wide temperature range, and exhibited reversible thermoresponsivity. The initial sol–gel transition temperatures of MC/PVA hydrogels containing 40, 45 and 50 wt% MC were 45.9, 42.0 and 45.5 °C, respectively. It was found that the crystallinity of these samples was 41.1%, 38.3% and 40.3%, respectively; all of them were lower than that of MC and PVA. The thermal responding rates of MC/PVA hydrogel composed of 30, 40, 45 and 50 wt% MC were about 2.85, 3.17, 5.74 and 8.58%/min, respectively. The fluorescence micrograph and scanning electron microscopy of MC/PVA hydrogel revealed that the micro MC sol phases were dispersed in whole PVA network. Moreover, the thermal transition behavior and interior morphology of MC/PVA hydrogel could be tailored with its composition.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, ,