Article ID Journal Published Year Pages File Type
1396688 European Journal of Medicinal Chemistry 2009 7 Pages PDF
Abstract

Aromatase, the enzyme responsible for estrogen biosynthesis, is an attractive target in the treatment of hormone-dependent breast cancer. In this manuscript, the structure-based drug design approach of sulfonanilide analogues as potential selective aromatase expression regulators (SAERs) is described. Receptor-independent CoMFA (Comparative Molecular Field Analysis) maps were employed for generating a pseudocavity for LeapFrog calculation. A robust model, using 45 and 10 molecules in the training and test sets, respectively, was developed producing statistically significant results with cross-validated and conventional correlation coefficients of 0.656 and 0.956, respectively. This model was used to predict the activity of newly proposed molecules as SAERs candidates being two magnitude orders more potent than the previously reported compounds. Also in the present study, the computational blind docking method using eHiTS is tested on molecules study group and COX-2 enzyme. Future perspectives of the method in the screening of SAERs candidates with no COX-2 inhibitory activity are discussed.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,