Article ID Journal Published Year Pages File Type
1400327 European Polymer Journal 2005 10 Pages PDF
Abstract

Biodegradable polyurethane elastomers with potential for applications in medical implants with tunable degradation rate and physical properties were synthesized from reaction of epoxy terminated polyurethanes (EUP) with 1,6-hexamethylene diamine (HMDA) as curing agent. Poly(ε-caprolactone) (PCL) and poly(ethylene glycol) (PEG) as well as 1,6-hexamethylene diisocyanate (HDI) were used for preparation of isocyanate terminated polyurethanes which were subsequently blocked with glycidol to prepare EUPs. All materials were characterized by conventional methods, and their properties were studied fully. Results showed that elastomers based on PEG exhibit superior degradation rate and inferior mechanical properties in comparison to elastomers based on PCL. Optimum degradation rate and mechanical properties were obtained from elastomers made from mixture of PCL and PEG base EUPs.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , ,