Article ID Journal Published Year Pages File Type
1402737 European Polymer Journal 2009 6 Pages PDF
Abstract

To prepare intermediary layer crosslinked micelles, a photocrosslinkable amphiphilic ABC triblock copolymer, poly(ethylene glycol)-b-poly(2-cinnamoyloxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG–PCEMA–PMMA), was synthesized and its micellar characteristics were investigated. The triblock copolymer of PEG-b-poly(2-hydroxyethyl methacrylate)-b-PMMA (PEG–PHEMA–PMMA) (Mn = 9800 g/mol, Mw/Mn = 1.33) was first polymerized by activators generated by electron transfer (AGET) atom transfer radical polymerization (ATRP) using a PEG macroinitiator in a mixed solvent of anisole/2-isopropanol (3/1 v/v). The middle block of the copolymer was then functionalized with cinnamoyl chloride. The degrees of polymerization of the PEG, PHEMA, and PMMA blocks were 113, 18 and 21, respectively. The critical micelle concentration (CMC) of the PEG–PCEMA–PMMA was 0.011 mg/mL. The PEG–PCEMA–PMMA micelles were spherically shaped with an average diameter of 43 nm. The intermediary layer of the PEG–PCEMA–PMMA micelles was crosslinked by UV irradiation. Not all of the cinnamate groups underwent photocrosslinking probably due to a lack of other cinnamate groups in their immediate vicinity. However, the degree of photocrosslinking of the intermediary layer of the PEG–PCEMA–PMMA micelles was sufficient to give excellent colloidal stability, even in different external environments.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , ,