Article ID Journal Published Year Pages File Type
1402879 European Polymer Journal 2009 13 Pages PDF
Abstract

Poly(imide-siloxane) (PIS) block copolymers were studied with respect to their structure surface and adhesive properties relationship. The study of the morphology of PIS copolymers characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) shows a growth of the surface roughness by increase of the content of siloxane. With an increase of siloxane content Attenuated Total Reflection-Fourier Transform Infra Red (ATR-FTIR) spectroscopy detected a growth of the absorption bands near 1100 cm−1 characteristic for siloxane group, and a decrease at 1700–1800 cm−1 corresponding to carbonyl groups of polyimide moieties. The X-ray Photoelectron Spectroscopy (XPS) and Time-of-Flight-Secondary Ion Mass Spectroscopy (TOF-SIMS) analysis showed an excessive increase of Si on surface of the copolymer. The relatively small amount of siloxane in PIS block copolymer, 10–20 wt.%, increased significantly the contact angle of water due to the surface hydrophobization of the copolymer and the significant decrease of the surface energy of the PIS copolymer has been observed. The polar component of surface energy shows an intense decrease, whereas its dispersive component increases. The increase of the surface hydrophobicity reduced the peel as well as shear strengths of epoxy adhesive joints. The relationship between peel strength of adhesive joint to epoxy and polar fraction of PIS copolymer can be described by exponential decay dependence.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , , , , , , , , ,