Article ID Journal Published Year Pages File Type
1403676 European Polymer Journal 2007 10 Pages PDF
Abstract

The electrical conductivity of polymer/multi-walled carbon nanotubes (MWCNTs) composites in a powder and in a hot-pressed compacted state, prepared by mechanical mixing, was studied. The semicrystalline ultrahigh molecular weight polyethylene (UHMWPE) was used as a polymer matrix. The data clearly evidence the presence of a percolation threshold φc at a very small volume fraction of the MWCNTs φ in a polymer matrix, φc ≈ 0.0004–0.0007. The ultralow percolation threshold in UHMWPE/MWCNTs thermoplastic composites was explained by high aspect ratio of the nanotubes and their segregated distribution inside the polymer matrix. The method of composite preparation effects the values of percolation threshold concentration φc and critical exponent t. A noticeable positive temperature coefficient of resistivity (PTC effect) was observed in the region of temperatures higher than melting point. It was explained by influence of thermal expansion of the polymer matrix and independence from the melting process that is a result of specific structure of conductive phase.

Related Topics
Physical Sciences and Engineering Chemistry Organic Chemistry
Authors
, , , ,