Article ID Journal Published Year Pages File Type
1413228 Carbon 2016 8 Pages PDF
Abstract

The electronic structures of carbon nanocages (CNCs) and nitrogen/phosphorus doped carbon nanocages (N-CNCs/P-CNCs) have been studied by X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and resonant X-ray emission spectroscopy (RXES). The doping configurations for N/P dopants are identified from the experiments. The results have shown that there are three major doping configurations for nitrogen but only one doping configuration for phosphorus. The nitrogen doping reveals the complex coexistence of graphite-like, pyridine-like and pyrrole-like configurations that are proved by density functional theory (DFT) simulations, while the phosphorus doping presents only the “graphite-like” configuration. The different configuration profiles result in less atomic structure ordering of N-CNCs than that of P-CNCs. XAS spectra obtained from both surface and bulk sensitive detection suggest different chemical environments between the interior and shell for all types of nanocages. The electronic structure modifications show significant difference between nitrogen and phosphorus doping from the DOS calculations.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , , , , ,