Article ID Journal Published Year Pages File Type
1414176 Carbon 2013 8 Pages PDF
Abstract

Pore structure of carbide-derived carbon (CDC) was tunable by chlorination of Ti(C1−xAx) solid–solution carbides (A = O or N). High-energy ball milling method was used to synthesize various nanocrystalline Ti(C1−xAx) phases. We were able to obtain specific dimension of pore volumes in the range of micropore (<2 nm) or mesopore size (2–50 nm), depending on the compositions of the precursors. The substitutional atoms and their contents effectively modify the characteristics of pores i.e., pore size, volume and their distributions. The micropore volume density, total pore volume density and specific surface area (SSA) of Ti(C0.7O0.3) CDCs were found 1.55 cm3/g, 1.72 cm3/g and 3100 m2/g, respectively. In contrast, Ti(C0.5N0.5) CDCs showed enhancement of mesopore formation with 3.34 cm3/g, 3.45 cm3/g and 522 m2/g for mesopore volume density, total pore volume density and SSA, respectively.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,