Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1414264 | Carbon | 2013 | 10 Pages |
In an investigation of structure–property–processing relationships for SWCNT thin film piezoresistive sensors, the gauge factor of the sensors for a small tensile deformation (less than 2% strain) was found to be close to unity and showed negligible dependence on the film thickness and SWCNT bundle length (L) and diameter (d). However, for a large tensile deformation (20–30% strain), the film thickness and the microstructure of SWCNTs had a compounding effect on the piezoresistive behavior. A gauge factor of ∼5 was obtained for the sensors fabricated with SWCNT bundles of short length and thin diameter (L = 549 nm and d = 3.7 nm) with thicker films. Furthermore, the gauge factor of the sensors was found inversely proportional to the excluded volume Vex of SWCNT bundles (Vex ∝ 1/L2 d).