Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1414370 | Carbon | 2013 | 9 Pages |
1D-confinement of polyiodides inside single-wall carbon nanotubes (SWCNT) is investigated. Structural arrangement of iodine species as a function of the SWCNT diameters is studied. Evidence for long range one dimensional ordering of the iodine species is shown by X-ray and electron diffraction experiments independently of the tube diameter. The structure of the confined polyiodides is investigated by X-ray absorption spectroscopy. The confinement influences the local arrangement of the chains. Below a critical diameter Φc of 1 nm, long linear polyiodides are evidenced leading to a weaker charge transfer than for nanotube diameter above Φc. A shortening of the polyiodides is exhibited with the increase of the nanotube diameter leading to a more efficient charge transfer. This point reflects the 1D-confinement of the polyiodides inside the nanotubes.