Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1414392 | Carbon | 2013 | 11 Pages |
Abstract
Membranes with high strength and elasticity are of great demand in patch therapy. Similar membranes have been developed by combining carboxy-functionalized multiwalled carbon nanotube (c-MWCNT) with different poly(vinyl alcohol) (PVA) as potential diltiazem delivery device through aqueous mixing. High molecular weight PVA (PVAH) produced stronger interaction with c-MWCNT than low molecular weight PVA (PVAL) preferably at low concentration. Positive changes in favor of PVAH in infrared and solid state 13C nuclear magnetic resonance spectroscopy, wide angle X-ray scattering, thermal stability, morphology and dry and wet mechanical properties clearly demonstrate that. Fibrillar c-MWCNT array at 1Â wt.% in PVAH (PVAH/1) has drastically improved PVA crystalline cell dimension, tensile strength (201%) and elongation (196%) than neat PVAH whereas the similar improvement is much less (100% and 185%) in PVAL (PVAL/1) due to globular morphology. Instead, c-MWCNT performed better at 0.5Â wt.% in PVAL (PVAL/0.5). The kinetic data reflects better encapsulation and slower release by PVAH (5.87%) than PVAL (10.17%) due to greater interfacial interaction.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Tridib Bhunia, Arindam Giri, Tanbir Nasim, Dipankar Chattopadhyay, Abhijit Bandyopadhyay,