Article ID Journal Published Year Pages File Type
1414392 Carbon 2013 11 Pages PDF
Abstract
Membranes with high strength and elasticity are of great demand in patch therapy. Similar membranes have been developed by combining carboxy-functionalized multiwalled carbon nanotube (c-MWCNT) with different poly(vinyl alcohol) (PVA) as potential diltiazem delivery device through aqueous mixing. High molecular weight PVA (PVAH) produced stronger interaction with c-MWCNT than low molecular weight PVA (PVAL) preferably at low concentration. Positive changes in favor of PVAH in infrared and solid state 13C nuclear magnetic resonance spectroscopy, wide angle X-ray scattering, thermal stability, morphology and dry and wet mechanical properties clearly demonstrate that. Fibrillar c-MWCNT array at 1 wt.% in PVAH (PVAH/1) has drastically improved PVA crystalline cell dimension, tensile strength (201%) and elongation (196%) than neat PVAH whereas the similar improvement is much less (100% and 185%) in PVAL (PVAL/1) due to globular morphology. Instead, c-MWCNT performed better at 0.5 wt.% in PVAL (PVAL/0.5). The kinetic data reflects better encapsulation and slower release by PVAH (5.87%) than PVAL (10.17%) due to greater interfacial interaction.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,