Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1414767 | Carbon | 2012 | 9 Pages |
The thermal conductivity of composites with a polyphenylene sulfide (PPS) matrix and a mixture of boron nitride (BN) power and multi-wall carbon nanotube (MWCNT) fillers was investigated. Synergistic improvement in thermal conductivity of the composite was observed due to the generation of three-dimensional thermal transfer pathways between the BN and MWCNT. The improvement strongly depended on surface treatment of the MWCNTs, such as hydrogen peroxide and acid treatments. The thermal conductivity of the composite was affected by the interaction and interfacial thermal resistance between the PPS matrix and the MWCNTs. The maximum thermal conductivity achieved was 1.74 W/m K for a composite that was pelletizable, injection moldable, and thermally conductive with low electrical conductivity and good mechanical properties.