Article ID Journal Published Year Pages File Type
1414989 Carbon 2012 8 Pages PDF
Abstract

Dense millimeter-tall carpets of vertically aligned carbon nanotubes (VACNTs) were grown using thermal chemical vapor deposition (CVD) from ethylene and hydrogen gases with two or three independently controlled hot zones while introducing controlled flows of oxygen. Through preheating, oxygen and hydrogen reacted through a multi-step reaction to form water, enabling the growth of tall CNT carpets. This process showed a large tolerance for variations of O2, H2, and C2H4. The measured water vapor produced was half the theoretical maximum. The residence time strongly affected the decomposition of the gases. The simplicity and robustness of this CVD process provides a simpler alternative to direct addition of water vapor for manufacturing tall carpets of aligned CNTs with a high level of control.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , ,