Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1415396 | Carbon | 2011 | 8 Pages |
A novel method for the simultaneous formation of catalytic active metal nanoparticles, multiwall carbon nanotubes (MWCNTs) and/or turbostratic carbon and porous M@SiCN (M = Fe, Co, Pt, Cu, Ag, Au) ceramics during pyrolysis of metal modified polysilazanes and polyethylene (PE) particles as sacrificial filler is described. The thermal decomposition of the polyethylene leads not only to the generation of the porosity but also to an in situ reduction of the metal compounds to the metal nanoparticles, due to the reductive atmosphere. Depending on the metal, carbon nanotubes as well as turbostratic carbon were formed in different amounts, due to the chemical vapor deposition (CVD) like conditions. The resulting carbon phases, ceramics and metal nanoparticles were investigated using the combination of scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) measurements, giving evidence for the presence of the carbon phases and the metal particles.