Article ID Journal Published Year Pages File Type
1415442 Carbon 2011 13 Pages PDF
Abstract

Ordered microporous carbons containing dispersed platinum nanoparticles were fabricated and chosen as suitable models to investigate micro-structure development and hydrogen transport properties of zeolite-templated carbons. X-ray photoelectron spectroscopy analysis revealed that the enhanced heat of adsorption is related to the narrow micro-channels templated from the zeolite and the presence of certain CO groups on the carbon. The lack of a well-defined and intense rotational transition line and the persistent broad H2 recoil spectrum in neutron scattering results suggests a distribution of binding sites. Most interestingly, hydrogen diffusion occurs on two time scales, consisting of a fast liquid-like jump diffusion on the timescale of picoseconds along with an even faster bulk-like diffusion. The liquid-like motion is characterized by a diffusion constant of (2.1 ± 0.3) × 10−8 m2/s with an activation energy of ca. 77 K; both values indicate somewhat lower mobility than similar dynamics of H2 on nanotubes, activated carbon XC-72, or Grafoil, yet greater mobility than that of bulk liquid. These unusual characteristics for hydrogen in carbons are believed to arise from the network of narrow pores in this zeolite-templated image of the zeolite. In fact, the diffusion constants of the templated carbons are extremely similar to those measured for zeolite 13X.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , , , , , , , ,