Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1415485 | Carbon | 2012 | 7 Pages |
The morphological evolution of an amorphous carbon film deposited by energetic carbon atoms of 75 eV with various angles of incidence was investigated by molecular dynamics simulation. Normal or near-normal incidence of carbon atoms resulted in a smooth surface of the deposited film. In contrast, a bump-like surface structure emerged and led to rough surfaces at grazing incidences, in agreement with the experiments. The bifurcated growth mode was explained by the impact-induced transport of atoms on the growing surface. The downhill transport of atoms on a sloping surface dominates at normal incidence, which suppresses the evolution of surface irregularities to form a rough surface. However, the dominance of uphill transport at a grazing incidence made the surface irregularities grow to a seed structure, which provided the shadowing effect during carbon deposition. This mechanism mediates initial seed formation and subsequent roughening together with shadowing effects under grazing incidence.