Article ID Journal Published Year Pages File Type
1415487 Carbon 2012 8 Pages PDF
Abstract

The thermal conductivity of graphene nanoribbons (GNRs) functionalized by the chemical attachment of methyl and phenyl groups at random positions is calculated using reverse nonequilibrium molecular dynamics. The GNRs exhibit a rapid drop in thermal conductivity with increasing degree of functionalization; a functional group coverage regime of as little as 1.25% of GNR atoms reduces the thermal conductivity by about 50%. The thermal conductivity of nanoribbons with zigzag edges is more sensitive in the degree of functionalization than nanoribbons with armchair edges. The simulation results indicate that the rapid drop in thermal conductivity is a consequence of the higher angular momentum of functional groups, which rotate the unsupported sp3 bonds and thus reduce the phonon mean free paths.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , ,