Article ID Journal Published Year Pages File Type
141666 Trends in Cognitive Sciences 2012 12 Pages PDF
Abstract

The systems-level neuronal mechanisms that coordinate temporally, anatomically and functionally distributed neuronal activity into coherent cognitive operations in the human brain have remained poorly understood. Synchronization of neuronal oscillations may regulate network communication and could thus serve as such a mechanism. Evidence for this hypothesis, however, was until recently sparse, as methodological challenges limit the investigation of interareal interactions with non-invasive magneto- and electroencephalography (M/EEG) recordings. Nevertheless, recent advances in M/EEG source reconstruction and clustering methods support complete phase-interaction mappings that are essential for uncovering the large-scale neuronal assemblies and their functional roles. These data show that synchronization is a robust and behaviorally significant phenomenon in task-relevant cortical networks and could hence bind distributed neuronal processing to coherent cognitive states.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, ,