Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1416937 | Carbon | 2009 | 9 Pages |
Abstract
Diameter-controlled single-wall carbon nanotubes (SWCNTs) have been synthesized using Co, Fe/Co and Rh/Pd alloy nanoparticles trapped within the one-dimensional channels of a mesoporous materials (Folded Sheets Mesoporous material: FSM-16) by catalyst-supported chemical vapor deposition (CCVD) using ethanol as carbon source at 973-1173Â K. The SWCNTs synthesized are characterized by transmission electron microscopy, Raman spectroscopy and photoluminescence spectroscopy. The yield, diameter distribution and quality of the SWCNTs strongly depend on the reaction temperature during CCVD. The product synthesized at 1173Â K contains only SWCNTs, in marked contrast to those synthesized at lower temperatures. As the reaction temperature decreases, the relative abundance of multi-wall carbon nanotubes against SWCNTs significantly increases, whereas the mean diameter of SWCNTs increases as reaction temperature increases. The results show that a careful control of the reaction temperature is crucial to fabricate diameter-controlled SWCNTs from the channels of FSM-16.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Keita Kobayashi, Ryo Kitaura, Yoko Kumai, Yastomo Goto, Sinji Imagaki, Hisanori Shinohara,