Article ID Journal Published Year Pages File Type
1417035 Carbon 2010 6 Pages PDF
Abstract

Graphene oxide (GO) was immobilized on the surfaces of acrylic yarns through a conventional dyeing approach. The GO dyed yarns and/or the fabric were immersed in an aqueous sodium hydrosulfite solution at around 363 K for 30 min, which converted the GO into graphene. The graphene created a graphitic-coloured and electrically conductive thin layer over each yarn in the fabric. Data on the electrical conductance of the yarns versus temperature (30–300 K) fit well with the so-called fluctuation-induced tunneling model, which suggests that the graphene layer belongs to a continuously interconnected network. Values of the electrical resistivity ranged from 102 to 1010 Ohm/cm, as verified by the content of graphene in the conductive layer.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,