Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1417084 | Carbon | 2010 | 10 Pages |
Hydrogen adsorption on ultramicroporous carbon was investigated at near-ambient temperatures using volumetric and gravimetric methods. The results showed that the main process, physisorption, is accompanied by a slow process of different nature, that causes slow uptake at high pressures and hysteresis on desorption. The combined result is unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt.% at 25 °C and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17–20 kJ/mol) is higher than usually reported for carbon materials; the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption induced by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.