Article ID Journal Published Year Pages File Type
1417084 Carbon 2010 10 Pages PDF
Abstract

Hydrogen adsorption on ultramicroporous carbon was investigated at near-ambient temperatures using volumetric and gravimetric methods. The results showed that the main process, physisorption, is accompanied by a slow process of different nature, that causes slow uptake at high pressures and hysteresis on desorption. The combined result is unusually high levels of hydrogen uptake at near-ambient temperatures and pressures (e.g. up to 0.8 wt.% at 25 °C and 2 MPa). The heat of adsorption corresponding to the slow process leading to high uptake (17–20 kJ/mol) is higher than usually reported for carbon materials; the adsorption kinetics is slow, and the isotherms exhibit pronounced hysteresis. These unusual properties were attributed to contributions from polarization-enhanced physisorption induced by traces of alkali metals residual from chemical activation. The results support the hypothesis that polarization-induced physisorption in high surface area carbons modified with traces of alkali metal ions is an alternate route for increasing the hydrogen storage capacity of carbon adsorbents.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,