Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1417096 | Carbon | 2010 | 9 Pages |
Abstract
The preparation, characterization and comparison of nanostructured carbons derived by direct chlorination of Cr3C2 and Cr(C5H7O2)3 are reported in this work. Cr3C2 precursor was treated at 400 and 900 °C with a reaction time of 1 h. The nanostructure of the products has been characterized in some detail by means of transmission electron microscopy and associated techniques, such as electron energy-loss and X-ray energy dispersive spectroscopies and high-angle annular dark field imaging. Remains of Cr3C2 encapsulated in an amorphous carbon shell were observed at 400 °C, whereas carbon with higher ordering degree was produced at 900 °C. In the latter case, the sample can be described as a continuous variation from poorly-stacked graphene-like carbon to graphitic agglomerates. Remains of the reaction by-product, CrCl3, are detected in the carbon particles, forming monolayers intercalated inside the graphitic agglomerates and amorphous nanoparticles. As a comparison, carbon samples derived from Cr(C5H7O2)3 were prepared at 300 and 900 °C. They mainly consist of highly disordered carbon, with local graphite-like stacking in the sample prepared at 900 °C.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
E. Urones-Garrote, A. Gómez-Herrero, D. Ávila-Brande, N.A. Katcho, E. Lomba, A.R. Landa-Cánovas, L.C. Otero-DÃaz,