Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1417107 | Carbon | 2010 | 9 Pages |
The surface chemistry of Single-Walled Carbon Nanotubes is finely tailored by a HNO3 hydrothermal method. Temperature Programmed Desorption analysis is used to determine the nature and amount of different oxygenated functionalities, which are introduced in a controlled mode. The degree of oxygen functionalization is correlated with HNO3 concentration through a mathematical function. Operating temperature and HNO3 concentration are key parameters in the modification of the surface chemistry, in accordance with previous results obtained with a carbon xerogel subjected to the same hydrothermal treatment. A detailed comparison between the results obtained with both materials indicates that the yield of the HNO3 hydrothermal functionalization strongly depends on the texture of the carbon material that is used.