Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1417161 | Carbon | 2007 | 6 Pages |
Abstract
Torsional buckling of carbon nanopeapods (carbon nanotubes filled with fullerenes) is studied using a continuum-based multi-layered shell model. The model takes into account non-bonded van der Waals interactions between nested fullerenes and the innermost layer of host nanotube. For nanopeapods with linearly arranged nested fullerenes, equivalent pressure distribution is proposed to model these interactions. Deriving explicit equations governing the torsional stability, it is concluded that the critical torsional load of a carbon nanopeapod is less than that of a carbon nanotube under otherwise identical geometric and mechanical conditions. Performing numerical calculations, it is also shown that increasing the number of layers of the host carbon nanotube decreases the weakening effect of encapsulated fullerenes on torsional stability of the nanopeapod.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
A.N. Sohi, R. Naghdabadi,