Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1417735 | Carbon | 2009 | 9 Pages |
An easy method is described for the synthesis of a mesostructured Ni/ordered mesoporous carbon (OMC) composite with a highly ordered cubic structure (space group Im3m). This synthesis was carried out by the carbonization of the F127/[Ni(H2O)6](NO3)2/RF (resorcinol-formaldehyde) composite self-assembled in an alkaline medium. The effects of nickel loading content and carbonization temperature on the morphologies, pore features, structures and magnetic properties of these Ni/OMC composites were investigated using the thermogravimetric analysis, X-ray diffraction, nitrogen sorption, transmission electron microscopy and vibrating-sample magnetometer measurements. It was found that Ni2+ was captured by the network of F127/RF and further reduced into metallic Ni nanoparticles during the carbonization. The nickel nanoparticles were well-dispersed in the ordered mesoporous carbon walls. The Ni/OMC composites exhibit the soft ferromagnetic behavior and the magnetization parameters can be adjusted by the content of nickel and the carbonization temperatures. The excellent acid-resistant property of the magnetic materials makes them useful in magnetic separation.