Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1417764 | Carbon | 2010 | 7 Pages |
Abstract
For the purpose of enhancing the field-effect mobility of poly(3-hexylthiophene) (P3HT), multi-walled carbon nanotubes (MWCNTs) were functionalized by attaching covalently P3HT onto the MWCNT surface to yield P3HT-grafted MWCNTs (g-MWCNTs). When a small amount of g-MWCNTs was added to P3HT, the field-effect mobility of the composite was considerably increased as compared to either P3HT or the composites of P3HT and carboxylated MWCNTs (c-MWCNTs). This is because g-MWCNTs are better dispersed than c-MWCNTs in P3HT matrix and consequently g-MWCNTs act more effectively as conducting bridges connecting the crystallites of P3HT.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Yoon Jung Song, Jea Uk Lee, Won Ho Jo,