Article ID Journal Published Year Pages File Type
1417768 Carbon 2010 9 Pages PDF
Abstract

Ion-exchanged sulfonated poly(aryl ether ketone), SPAEK with different counter-ions (H+, Na+ and Ag+) have been utilized as polymeric precursors to fabricate carbon membranes. The effects of the substituted metal ions in polymeric precursors on the separation properties of resultant carbon membranes were investigated. X-ray diffraction analysis reveals that the polymer chain packing is improved by the substituted metal ions. The silver doped SPAEK membrane demonstrates the smallest d-spacing due to the strong interactions between the silver ions and the polar groups within the polymeric matrix. The carbon membrane derived from Ag-SPAEK exhibits a more porous structure compared to that from ion-exchanged SPAEK membranes. The silver doping enhances the ideal gas permeability of carbonized membranes by 100 fold. On top of this, the H2/N2 selectivity increases from 100 to 220 while the CO2/CH4 selectivity jumps from 25 to 67. An interesting phenomenon was observed, which is the migration of silver nanoparticles and the subsequent accumulation in the bulk of membrane after carbonization. A possible mechanism to explain for this particle relocation is the Ostwald ripening. The special directional dispersion of metal nanoparticles in carbonaceous materials was investigated and discussed.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,