Article ID Journal Published Year Pages File Type
1417858 Carbon 2009 8 Pages PDF
Abstract

Employing a relatively new method, in which carbon structures are grown from fuel rich combustion mixtures using palladium particles as catalyst, multi-scale diameter nanometer – micrometer filament structures were grown from ethylene/oxygen mixtures at 550 °C on commercial PAN micrometer carbon fibers. The filaments formed had a diameter roughly equal to the palladium particle size. At sufficiently high metal loadings (>0.05 wt.%) a bimodal catalyst size distribution formed, hence a bimodal filament size distribution was generated. Relative short, densely spaced nanofilaments (ca. 10 nm diameter), and a slightly less dense layer of larger (ca. 100 nm diameter) faster growing fibers (ca. 10 μm/h) were found to exist together to create a unique multi-scale structure. A protocol was developed such that only nano-scale fibers or a mixture of nano and sub-micron fibers could be produced. No large range order was evident in the filaments. This work demonstrates a unique ability to create a truly ’multi-scale’ carbon structure on the surface of carbon fibers. This fiber structure potentially can enhance composite material strength, ductility and energy absorption characteristics.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , ,