Article ID Journal Published Year Pages File Type
1417881 Carbon 2008 7 Pages PDF
Abstract

Ferromagnetic hierarchical porous carbon (FHPC) with nickel particles embedded in the hierarchical porous carbon skeleton was synthesized. The hierarchical macro–mesoporous skeleton was formed by dissolving a salt template of Na2CO3 and the ferromagnetic nickel particles were produced by in situ carbothermal reduction of nickel oxide. The saturation magnetization, remnant magnetization and coercive force of FHPC are 11.3 emu g−1, 2.3 emu g−1 and 55.7 Oe. The ferromagnetic property enables the magnetic separation of the FHPC from water. The surface chemical environments of the FHPC consist of different oxygen functional groups, like –OH, >COO and >CO groups, as well as a trace amount of aliphatic species of –CH3 or -CH2--CH2- structures. Dye separation performance of the FHPC was investigated using methylene orange, and the adsorption capacity was 0.16 mg m−2 with the adsorption kinetics constant of 2.2 m2 mg−1 min−1, which is superior to that of magnetic carbon spheres.

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,