Article ID Journal Published Year Pages File Type
141827 Trends in Cognitive Sciences 2010 9 Pages PDF
Abstract

Two neural systems are known to encode self-location in the brain: Place cells in the hippocampus encode unique locations in unique environments, whereas grid cells, border cells and head-direction cells in the parahippocampal cortex provide a universal metric for mapping positions and directions in all environments. These systems have traditionally been studied in very simple environments; however, natural environments are compartmentalized, nested and variable in time. Recent studies indicate that hippocampal and entorhinal spatial maps reflect this complexity. The maps fragment into interconnected, rapidly changing and tightly coordinated submaps. Plurality, fast dynamics and dynamic grouping are optimal for a brain system thought to exploit large pools of stored information to guide behavior on a second-by-second time frame in the animal's natural habitat.

Related Topics
Life Sciences Neuroscience Cognitive Neuroscience
Authors
, ,